You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

402 lines
12 KiB

#include <wasm_simd128.h>
extern char __heap_base;
static int allocated_static;
static int allocated_dynamic;
void
set_sp(char *sp)
{
__asm__ __volatile__(
".globaltype __stack_pointer, i32\n"
"local.get %0\n"
"global.set __stack_pointer\n"
: : "r"(sp)
);
}
void
free_static(void)
{
allocated_static = 0;
}
void
free_dynamic(void)
{
allocated_dynamic = 0;
}
void *
alloc_static(int size)
{
// This IS NOT thread-safe
void *result = &__heap_base + allocated_static;
allocated_static += size;
return(result);
}
static int
round_to_pow2(int value, int multiple)
{
return((value + multiple - 1) & -multiple);
}
void *
alloc_dynamic(int size)
{
// Very ad-van-ced thread-safe allocator
// CAN be called from multiple threads
size = round_to_pow2(size, 4);
int original_allocated_dynamic = __atomic_fetch_add(&allocated_dynamic, size, __ATOMIC_SEQ_CST);
void *result = &__heap_base + allocated_static + original_allocated_dynamic;
return(result);
}
static int
rdp_find_max(float *xs, float *ys, unsigned char *pressures, float zoom, int coords_from,
int segment_start, int segment_end)
{
int result = -1;
if (segment_start == segment_end) {
return(result);
}
float EPS = 0.125f / zoom * 255.0f;
float max_dist = 0.0f;
float ax = xs[coords_from + segment_start];
float ay = ys[coords_from + segment_start];
float bx = xs[coords_from + segment_end];
float by = ys[coords_from + segment_end];
unsigned char ap = pressures[coords_from / 2 + segment_start];
unsigned char bp = pressures[coords_from / 2 + segment_end];
float dx = bx - ax;
float dy = by - ay;
float dist_ab = __builtin_sqrtf(dx * dx + dy * dy);
float dir_nx = dy / dist_ab * 255.0f;
float dir_ny = -dx / dist_ab * 255.0f;
#if 0
// Scalar version preserved for reference
for (int i = segment_start + 1; i < segment_end; ++i) {
float px = xs[coords_from + i];
float py = ys[coords_from + i];
unsigned char pp = pressures[coords_from + i];
float apx = px - ax;
float apy = py - ay;
float dist = __builtin_fabsf(apx * dir_nx + apy * dir_ny)
+ __builtin_abs(pp - ap) + __builtin_abs(pp - bp);
if (dist > EPS && dist > max_dist) {
result = i;
max_dist = dist;
}
}
#else
v128_t ax_x4 = wasm_f32x4_splat(ax);
v128_t ay_x4 = wasm_f32x4_splat(ay);
v128_t ap_x4 = wasm_f32x4_splat(ap);
v128_t bp_x4 = wasm_f32x4_splat(bp);
v128_t dir_nx_x4 = wasm_f32x4_splat(dir_nx);
v128_t dir_ny_x4 = wasm_f32x4_splat(dir_ny);
v128_t index_x4 = wasm_u32x4_make(segment_start + 1, segment_start + 2, segment_start + 3, segment_start + 4);
v128_t four_x4 = wasm_u32x4_const_splat(4);
v128_t max_dist_x4 = wasm_f32x4_splat(EPS);
v128_t max_index_x4 = wasm_u32x4_const_splat(-1);
for (int i = segment_start + 1; i < segment_end - 3; i += 4) {
v128_t px_x4 = wasm_v128_load(xs + coords_from + i);
v128_t py_x4 = wasm_v128_load(ys + coords_from + i);
v128_t pp_x4 = wasm_f32x4_make(
pressures[coords_from / 2 + i + 0],
pressures[coords_from / 2 + i + 1],
pressures[coords_from / 2 + i + 2],
pressures[coords_from / 2 + i + 3]
);
v128_t apx_x4 = wasm_f32x4_sub(px_x4, ax_x4);
v128_t apy_x4 = wasm_f32x4_sub(py_x4, ay_x4);
v128_t dist_x4 = wasm_f32x4_add(
wasm_f32x4_add(
wasm_f32x4_abs(wasm_f32x4_sub(pp_x4, ap_x4)),
wasm_f32x4_abs(wasm_f32x4_sub(pp_x4, bp_x4))
),
wasm_f32x4_abs(
wasm_f32x4_add(
wasm_f32x4_mul(apx_x4, dir_nx_x4),
wasm_f32x4_mul(apy_x4, dir_ny_x4)
)
)
);
v128_t mask = wasm_f32x4_gt(dist_x4, max_dist_x4);
max_index_x4 = wasm_v128_bitselect(index_x4, max_index_x4, mask);
max_dist_x4 = wasm_v128_bitselect(dist_x4, max_dist_x4, mask);
index_x4 = wasm_i32x4_add(index_x4, four_x4);
}
int indices[4];
float values[4];
wasm_v128_store(indices, max_index_x4);
wasm_v128_store(values, max_dist_x4);
for (int i = 0; i < 4; ++i) {
if (indices[i] != -1) {
if (values[i] > max_dist) {
result = indices[i];
max_dist = values[i];
}
}
}
if (max_dist == EPS) {
max_dist = 0.0f;
result = -1;
}
int remainder = (segment_end - segment_start - 1) % 4;
for (int i = segment_end - remainder; i < segment_end; ++i) {
float px = xs[coords_from + i];
float py = ys[coords_from + i];
unsigned char pp = pressures[coords_from + i];
float apx = px - ax;
float apy = py - ay;
float dist = __builtin_fabsf(apx * dir_nx + apy * dir_ny)
+ __builtin_abs(pp - ap) + __builtin_abs(pp - bp);
if (dist > EPS && dist > max_dist) {
result = i;
max_dist = dist;
}
}
#endif
return(result);
}
void
do_lod(int *clipped_indices, int clipped_count, float zoom,
int *stroke_coords_from,
int *width,
float *xs,
float *ys,
unsigned char *pressures,
char **result_buffer,
int *result_count,
int *result_batch_count)
{
if (clipped_count == 0) {
result_count[0] = 0;
return;
}
int first_stroke = clipped_indices[0];
int last_stroke = clipped_indices[clipped_count - 1];
int total_points = 0;
for (int i = 0; i < clipped_count; ++i) {
int stroke_index = clipped_indices[i];
total_points += stroke_coords_from[stroke_index + 1] - stroke_coords_from[stroke_index];
}
int *segments_from = alloc_dynamic((clipped_count + 1) * 4);
int *segments = alloc_dynamic(total_points * 4); // TODO: this is a very conservative estimate, we can lower memory usage if we get this tighter
int segments_head = 0;
int stack[4096]; // TODO: what's a reasonable max size for this?
int max_stack_size = 0;
for (int i = 0; i < clipped_count; ++i) {
int stroke_index = clipped_indices[i];
// TODO: convert to a proper CSR, save half the memory
int coords_from = stroke_coords_from[stroke_index];
int coords_to = stroke_coords_from[stroke_index + 1];
int point_count = coords_to - coords_from;
// Basic CSR crap
segments_from[i] = segments_head;
int segment_count = 2;
int stack_head = 0;
segments[segments_head++] = 0;
stack[stack_head++] = 0;
stack[stack_head++] = 0;
stack[stack_head++] = point_count - 1;
while (stack_head > 0) {
if (stack_head > max_stack_size) { max_stack_size = stack_head; }
int end = stack[--stack_head];
int start = stack[--stack_head];
int type = stack[--stack_head];
if (type == 1) {
segments[segments_head++] = start;
} else {
int max = rdp_find_max(xs, ys, pressures, zoom, coords_from, start, end);
if (max != -1) {
segment_count += 1;
stack[stack_head++] = 0;
stack[stack_head++] = max;
stack[stack_head++] = end;
stack[stack_head++] = 1;
stack[stack_head++] = max;
stack[stack_head++] = -1;
stack[stack_head++] = 0;
stack[stack_head++] = start;
stack[stack_head++] = max;
}
}
}
segments[segments_head++] = point_count - 1;
}
segments_from[clipped_count] = segments_head;
// Write actual coordinates (points) and stroke ids
// Do this in one allocation so that they're not interleaved between threads
char *output = alloc_dynamic(round_to_pow2(segments_head * (3 * 4 + 1), 4) + clipped_count * 4 * 2); // max two ints per stroke for batch info (realistically, much less)
float *points = (float *) output;
int *ids = (int *) (output + segments_head * 4 * 2);
unsigned char *pressures_res = (unsigned char *) (output + segments_head * 4 * 3);
int *batches = (int *) (output + round_to_pow2(segments_head * (4 * 3 + 1), 4));
int phead = 0;
int ihead = 0;
float sqrt_zoom = __builtin_sqrtf(zoom);
int last_lod = -100;
int batch_count = 0;
int batch_size = 0;
for (int i = 0; i < clipped_count; ++i) {
int stroke_index = clipped_indices[i];
int base_stroke = stroke_coords_from[stroke_index];
int from = segments_from[i];
int to = segments_from[i + 1];
for (int j = from; j < to; ++j) {
int point_index = segments[j];
float x = xs[base_stroke + point_index];
float y = ys[base_stroke + point_index];
points[phead++] = x;
points[phead++] = y;
pressures_res[ihead] = pressures[base_stroke + point_index];
if (j != to - 1) {
ids[ihead++] = stroke_index;
} else {
ids[ihead++] = stroke_index | (1 << 31);
}
}
int segment_count = to - from;
// Compute recommended LOD level, add to current batch or start new batch
float sqrt_width = __builtin_sqrtf(width[stroke_index]);
int lod = __builtin_ceil(sqrt_zoom * sqrt_width * 0.3333f); // TODO: round
if (lod > 7) lod = 7;
if (batch_size > 0 && __builtin_abs(lod - last_lod) > 2) {
// Start new batch
batches[batch_count * 2 + 0] = batch_size;
batches[batch_count * 2 + 1] = last_lod;
++batch_count;
batch_size = 0;
}
batch_size += segment_count;
last_lod = lod;
}
if (batch_size > 0) {
batches[batch_count * 2 + 0] = batch_size;
batches[batch_count * 2 + 1] = last_lod;
++batch_count;
}
result_buffer[0] = output;
result_count[0] = segments_head;
result_batch_count[0] = batch_count;
}
// NOT thread-safe, only call from one thread
char *
merge_results(int *segment_counts, int *batch_counts, char **buffers, int nthreads)
{
int total_segments = 0;
int total_batches = 0;
for (int i = 0; i < nthreads; ++i) {
total_segments += segment_counts[i];
total_batches += batch_counts[i];
}
char *merged = alloc_dynamic(round_to_pow2(total_segments * (3 * 4 + 1), 4) + total_batches * 4);
float *points = (float *) merged;
int *ids = (int *) (merged + total_segments * 4 * 2);
unsigned char *pressures = (unsigned char *) (merged + total_segments * 4 * 3);
int *batches = (int *) (merged + round_to_pow2(total_segments * (3 * 4 + 1), 4));
int batch_base = 0;
int last_batch_lod = -99;
int bhead = 0;
int written_batches = 0;
for (int i = 0; i < nthreads; ++i) {
int segments = segment_counts[i];
int nbatches = batch_counts[i];
int *thread_batches = (int *) (buffers[i] + round_to_pow2(segments * (4 * 3 + 1), 4));
if (segments > 0) {
__builtin_memcpy(points, buffers[i], segments * 4 * 2);
__builtin_memcpy(ids, buffers[i] + segments * 4 * 2, segments * 4);
__builtin_memcpy(pressures, buffers[i] + segments * 4 * 3, segments);
for (int j = 0; j < nbatches * 2; j += 2) {
batches[bhead++] = written_batches;
batches[bhead++] = thread_batches[j + 1];
written_batches += thread_batches[j + 0];
}
points += segments * 2;
ids += segments;
pressures += segments;
}
}
segment_counts[0] = total_segments;
batch_counts[0] = total_batches;
return(merged);
}